2 research outputs found

    An Event Driven Hybrid Identity Management Approach to Privacy Enhanced e-Health

    Get PDF
    Credential-based authorization offers interesting advantages for ubiquitous scenarios involving limited devices such as sensors and personal mobile equipment: the verification can be done locally; it offers a more reduced computational cost than its competitors for issuing, storing, and verification; and it naturally supports rights delegation. The main drawback is the revocation of rights. Revocation requires handling potentially large revocation lists, or using protocols to check the revocation status, bringing extra communication costs not acceptable for sensors and other limited devices. Moreover, the effective revocation consent—considered as a privacy rule in sensitive scenarios—has not been fully addressed.This paper proposes an event-based mechanism empowering a new concept, the sleepyhead credentials, which allows to substitute time constraints and explicit revocation by activating and deactivating authorization rights according to events. Our approach is to integrate this concept in IdM systems in a hybrid model supporting delegation, which can be an interesting alternative for scenarios where revocation of consent and user privacy are critical. The delegation includes a SAML compliant protocol, which we have validated through a proof-of-concept implementation. This article also explains the mathematical model describing the event-based model and offers estimations of the overhead introduced by the system. The paper focus on health care scenarios, where we show the flexibility of the proposed event-based user consent revocation mechanism.This work was partially founded by the Spanish Ministry of Science and Innovation under the project TEC2010-20572-C02-01 (CONSEQUENCE) and by the State of Madrid (Spain) under the contract number S2009/TIC-1650 (e-Madrid). Moreover, the authors would like to thank to the anonymous referees for comments and recommendations for the paper improvement

    Single embryo and oocyte lipid fingerprinting by mass spectrometry[S]

    No full text
    Methods used for lipid analysis in embryos and oocytes usually involve selective lipid extraction from a pool of many samples followed by chemical manipulation, separation and characterization of individual components by chromatographic techniques. Herein we report direct analysis by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of single and intact embryos or oocytes from various species. Biological samples were simply moisturized with the matrix solution and characteristic lipid (represented by phosphatidylcholines, sphingomyelins and triacylglycerols) profiles were obtained via MALDI-MS. As representative examples, human, bovine, sheep and fish oocytes, as well as bovine and insect embryos were analyzed. MALDI-MS is shown to be capable of providing characteristic lipid profiles of gametes and embryos and also to respond to modifications due to developmental stages and in vitro culture conditions of bovine embryos. Investigation in developmental biology of the biological roles of structural and reserve lipids in embryos and oocytes should therefore benefit from these rapid MALDI-MS profiles from single and intact species
    corecore